
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences

CS 4530
Software Engineering
Lecture 6 - Asynchronous Programming

Zoom Mechanics

• Recording: This meeting is being recorded

• If you feel comfortable having your camera on, please do so! If not: a photo?

• I can see the zoom chat while lecturing, slack while you’re in breakout rooms

• If you have a question or comment, please either:

• “Raise hand” - I will call on you

• Write “Q: <my question>” in chat - I will answer 
 your question, and might mention your name and ask you 
 a follow-up to make sure your question is addressed

• Write “SQ: <my question>” in chat - I will answer 
 your question, and not mention your name or expect you to 
 respond verbally

Today’s Agenda

Administrative:

Team formation due Friday

HW2 posted, due next Friday

HW1 solution to be posted tomorrow

Today’s session:

Lecture: Asynchronous Programming

Activity: Asynchronous Programming with REST client

Why Asynchronous?

• Maintain an interactive application while still doing stuff

• Processing data

• Communicating with remote hosts

• Timers that countdown while our app is running

• Anytime that an app is doing more than one thing at a time, it is asynchronous

What is a thread?
(Not NodeJS-specific)

App Starts

App Ends

Program execution: a series of sequential method calls (s)

What is a thread?
(Not NodeJS-specific)

App Starts

App Ends

Program execution: a series of sequential method calls (s)

Multiple threads can run at once -> allows for asynchronous code

Asynchronous Computation with Threads
Typical Java Example
• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

main

thread 0

Interacts with user

Draws Swing interface

on screen, updates

screen

worker

thread 1

Processes data,
generates results

Share data

Signal each other

Asynchronous Programming in JS/TS
How do we make a network request? Isn’t that a slow thing?

console.log('Making a request to rest-example');

axios.get('https://rest-example.covey.town/') // axios is a popular library for making HTTP requests

 .then((response) =>{

 console.log('Heard back from server');

 console.log(response.data);

});

console.log('Response sent!');

Making a request to rest-example

Response sent!

Heard back from server

This is GET number 4 on the current server

Output:

axios.get is an asynchronous call

Multi-Threading in JS
• Everything you write will run in a single thread* (event loop)

• Since you are not sharing data between threads, races don’t happen as easily

• Inside of JS engine: many threads

• Event loop processes events, and calls your callbacks (or “event handlers”)

thread 1 thread 2 thread 3 thread n…
NodeJS

event
looperevent
loop

All of your code runs in this
one thread

event
queue

Asynchronous Programming in JS/TS
Promises

console.log('Making a request to rest-example');

console.log('Response sent!');

Making a request to rest-example

Response sent!

Heard back from server

This is GET number 4 on the current server

Output:

axios.get is an asynchronous call

axios.get('https://rest-example.covey.town/') // axios is a popular library for making HTTP requests

 .then((response) =>{

 console.log('Heard back from server');

 console.log(response.data);

});

axios.get returns a Promise for an AxiosResponse

Promise.then will run the event handler provided once
the value that is promised becomes available

Making lots of requests
3 Requests: What is the output?

console.log('Making a requests');

axios.get('https://rest-example.covey.town/')

 .then((response) =>{

 console.log('Heard back from server');

 console.log(response.data);

});

axios.get('https://www.google.com/')

 .then((response) =>{

 console.log('Heard back from Google');

 });

axios.get('https://www.facebook.com/')

 .then((response) =>{

 console.log('Heard back from Facebook');

 });

console.log('Requests sent!');

Making a requests

Requests sent!

Heard back from Google

Heard back from server

This is GET number 6 on the current server

Heard back from Facebook

Sample Output:

No guarantee on order of hearing back from Google, our server, or Facebook (new handlers)

These 2 lines ALWAYS first (same handler)

These 2 lines ALWAYS together (same handler)

Event Being Processed:

The Event Loop
Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

response from
google.com

response from
facebook.com

response from
covey.town

Pushes new event into queuePushes new event into queuePushes new event into queue

http://google.com
http://facebook.com

Event Being Processed:

The Event Loop
Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

response from
google.com

response from
facebook.com

response from
covey.town

http://google.com
http://facebook.com

Event Being Processed:

The Event Loop
Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

response from
facebook.com

response from
covey.town

http://facebook.com

Event Being Processed:

The Event Loop
Event Queue

thread 1 thread 2 thread 3 thread n…
JS Engine

event
loop

Are there any listeners registered for this event?
If so, call listener with event
After the listener is finished, repeat

response from
covey.town

The Event Loop

• Remember that JS is event-driven

axios.get('https://rest-example.covey.town/') // axios is a popular library for making HTTP requests

 .then((response) =>{

 console.log('Heard back from server');

 console.log(response.data);

});

• Event loop is responsible for dispatching events when they occur

• Main thread for event loop (buried somewhere in NodeJS) :

while(queue.waitForMessage()){

 queue.processNextMessage();

}

Run-to-completion semantics

• Run-to-completion

• The function handling an event and the functions that it (transitively)
synchronously calls will keep executing until the function finishes.

• The JS engine will not handle the next event until the event handler finishes.

handler1
f

h

g

handler2

... i

j...

processing of
event queue

Implications of run-to-completion

• Good news: no other code will run until you finish (no worries about other
threads overwriting your data)

handler1
f

h

g

handler2

... i

j...

processing of
event queue

j will not execute until after i

Implications of run-to-completion
Run-to-completion: first 2 lines ALWAYS first, covey.town handler lines always together

console.log('Making a requests');

axios.get('https://rest-example.covey.town/')

 .then((response) =>{

 console.log('Heard back from server');

 console.log(response.data);

});

axios.get('https://www.google.com/')

 .then((response) =>{

 console.log('Heard back from Google');

 });

axios.get('https://www.facebook.com/')

 .then((response) =>{

 console.log('Heard back from Facebook');

 });

console.log('Requests sent!');

Making a requests

Requests sent!

Heard back from Google

Heard back from server

This is GET number 6 on the current server

Heard back from Facebook

Sample Output:

No guarantee on order of hearing back from Google, our server, or Facebook (new handlers)

These 2 lines ALWAYS first (same handler)

These 2 lines ALWAYS together (same handler)

Implications of run-to-completion

• Bad/OK news: Nothing else will happen until event handler returns

• Event handlers should never block (e.g., wait for input) --> all callbacks
waiting for network response or user input are always asynchronous

• Event handlers shouldn't take a long time either

callback1
f

h

g

callback2

... i

j...

processing of
event queue

j will not execute until i finishes

What NOT to do in an event handler?
Run-to-completion: Slow handlers are really bad.

axios.get('https://rest-example.covey.town/')

 .then((response) =>{

 console.log('Heard back from server');

 console.log(response.data);

});

axios.get('https://www.google.com/')

 .then((response) =>{

 console.log('Heard back from Google');

 fs.writeFileSync("google-response.txt",response.data);

 });

axios.get('https://www.facebook.com/')

 .then((response) =>{

 console.log('Heard back from Facebook');

 fs.writeFileSync("facebook-response.txt",response.data);

 });

3 seconds 2.1 seconds
Write a file synchronously

(write it in this event handler)
Write a file asynchronously

(Ask NodeJS to write it in the
background, this returns a new Promise

to tell us when it’s done)

Good news: You usually have to go out of your way to use synchronous
I/O in NodeJS (the methods all have the word “Sync” in them)

axios.get('https://rest-example.covey.town/')

 .then((response) =>{

 console.log('Heard back from server');

 console.log(response.data);

});

axios.get('https://www.google.com/')

 .then((response) =>{

 console.log('Heard back from Google');

 return fsPromises.writeFile("google-response.txt",response.data);

 });

axios.get('https://www.facebook.com/')

 .then((response) =>{

 console.log('Heard back from Facebook');

 return fsPromises.writeFile("facebook-response.txt",response.data);

 });

More Properties of Good Handlers

• Remember that event events are processed in the order they are received

• Events might arrive in unexpected order

• Handlers should check the current state of the app to see if they are still
relevant

• Always add an error handler:
axios.get('https://www.facebook.com/')

 .then((response) =>{

 console.log('Heard back from Facebook');

 }).catch((error) => {

 console.log("Uh oh, I guess we should have an error handler!");

 console.trace(error);

});

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics

• From an array of StudentIDs:

• Request each student’s transcript

• Then for each transcript, save it to disk so that we have a copy

• Then once all of the pages are downloaded and saved, print out the total

size of all of the files that were saved

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics

• From an array of StudentIDs:

• Request each student’s transcript

• Then for each transcript, save it to disk so that we have a copy

• Then once all of the pages are downloaded and saved, print out the total

size of all of the files that were saved
const studentIDs = [1, 2, 3, 4];

const promisesForTranscripts = studentIDs.map(

 studentID => axios.get(`https://rest-example.covey.town/transcripts/${studentID}`));

Functional magic: map will apply the function specified to each element in
the array and return a new array containing the result of each of those

functions

The function that is applied to each studentID:
axios.get, which will return a promise!

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics

• From an array of StudentIDs:

• Request each student’s transcript

• Then for each transcript, save it to disk so that we have a copy

• Then once all of the pages are downloaded and saved, print out the total

size of all of the files that were saved
const studentIDs = [1, 2, 3, 4];

const promisesForTranscripts = studentIDs.map(

 studentID => axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 .then((response) =>

 fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

));

Don’t return the axios promise: return a NEW
promise, which will be complete when the request

arrives… to save the file!

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics

• From an array of StudentIDs:

• Request each student’s transcript

• Then for each transcript, save it to disk so that we have a copy

• Then once all of the pages are downloaded and saved, print out the total

size of all of the files that were saved
const studentIDs = [1, 2, 3, 4];

const promisesForTranscripts = studentIDs.map(

 studentID => axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 .then((response) =>

 fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

));

return Promise.all(promisesForTranscripts).then(results => {

 const statsPromises = studentIDs.map(studentID => fsPromises.stat(`transcript-${studentID}.json`));

});

New trick: Promise.all returns a new promise that
completes when all of the promises passed are
complete, it resolves with an array that contains

each resolved promise value

Make an array of
Promises for file statistics

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics

• From an array of StudentIDs:

• Request each student’s transcript

• Then for each transcript, save it to disk so that we have a copy

• Then once all of the pages are downloaded and saved, print out the total

size of all of the files that were saved
const studentIDs = [1, 2, 3, 4];

const promisesForTranscripts = studentIDs.map(

 studentID => axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 .then((response) =>

 fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

));

return Promise.all(promisesForTranscripts).then(results => {

 const statsPromises = studentIDs.map(studentID => fsPromises.stat(`transcript-${studentID}.json`));

 return Promise.all(statsPromises).then(stats => {

 const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);

 console.log(`Finished calculating size: ${totalSize}`);

 });

});

Now wait for the
stats…

More functional
magic: Take the array
of stats, accumulate
the size of each file

Problems with Promises
The order of operations is not intuitive from the code

console.log('Making a requests');

const studentIDs = [1, 2, 3, 4];

const promisesForTranscripts = studentIDs.map(

 studentID => axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 .then((response) =>

 fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

));

return Promise.all(promisesForTranscripts).then(results => {

 const statsPromises = studentIDs.map(studentID => fsPromises.stat(`transcript-${studentID}.json`));

 return Promise.all(statsPromises).then(stats => {

 const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);

 console.log(`Finished calculating size: ${totalSize}`);

 });

}).then(()=>{

 console.log('Done');

});

Async/Await
Your asynchronous friend

axios.get('https://rest-example.covey.town/').then(response => {

 console.log('Heard back from server');

 console.log(response.data);

}).catch(err => {

 console.log("Uh oh!");

 console.trace(err);

});

async function axiosAwaitExample() {

 try{

 const response = await axios.get('https://rest-example.covey.town/')

 console.log('Heard back from server');

 console.log(response.data);

 } catch(err){

 console.log("Uh oh!");

 console.trace(err);

 }

}

• Rules of the road:

• You can only call await from a function that is async

• You can only await on functions that return a Promise

• Beware: await makes your code synchronous (this is what we want it for)!

• Handle errors using try/catch

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics (async/await)

• From an array of StudentIDs:

• Request each student’s transcript

• Then for each transcript, save it to disk so that we have a copy

• Then once all of the pages are downloaded and saved, print out the total

size of all of the files that were saved
async function runClientAsync() {

 console.log('Making a requests');

 const studentIDs = [1, 2, 3, 4];

 const promisesForTranscripts = studentIDs.map(

 async (studentID) => {

 const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 });

 console.log('Requests sent!’);=
}

Functional magic: map will apply the function specified to each element in
the array and return a new array containing the result of each of those

functions

async: this function will
automatically return a

promise

await: wait for promise
to resolve, then get its

resolved value

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics (async/await)

• From an array of StudentIDs:

• Request each student’s transcript

• Then for each transcript, save it to disk so that we have a copy

• Then once all of the pages are downloaded and saved, print out the total

size of all of the files that were saved
async function runClientAsync() {

 console.log('Making a requests');

 const studentIDs = [1, 2, 3, 4];

 const promisesForTranscripts = studentIDs.map(

 async (studentID) => {

 const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

 });

 console.log('Requests sent!');

}
await: wait for promise
to resolve, then get its

resolved value

async: the Promise we
return won’t be resolved

until everything we
await is

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics (async/await)

• From an array of StudentIDs:

• Request each student’s transcript

• Then for each transcript, save it to disk so that we have a copy

• Then once all of the pages are downloaded and saved, print out the total

size of all of the files that were saved
async function runClientAsync() {

 console.log('Making a requests');

 const studentIDs = [1, 2, 3, 4];

 const promisesForTranscripts = studentIDs.map(

 async (studentID) => {

 const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

 });

 console.log('Requests sent!');

 await Promise.all(promisesForTranscripts);

 const stats = await Promise.all(studentIDs.map(studentID => fsPromises.stat(`transcript-${studentID}.json`)));

 const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);

 console.log(`Finished calculating size: ${totalSize}`);

 console.log('Done');

}

await for all transcripts
to be downloaded and

saved

await for all file
statistics to be collected

Example: Writing Asynchronous Tasks
Transcript Server: Calculating statistics (async/await vs Promise)

async function runClientAsync() {

 console.log('Making a requests');

 const studentIDs = [1, 2, 3, 4];

 const promisesForTranscripts = studentIDs.map(

 async (studentID) => {

 const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

 });

 console.log('Requests sent!');

 await Promise.all(promisesForTranscripts);

 const stats = await Promise.all(studentIDs.map(studentID => fsPromises.stat(`transcript-${studentID}.json`)));

 const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);

 console.log(`Finished calculating size: ${totalSize}`);

 console.log('Done');

}

function runClientPromises() {

 console.log('Making a requests');

 const studentIDs = [1, 2, 3, 4];

 const promisesForTranscripts = studentIDs.map(

 studentID => axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 .then((response) =>

 fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

));

 return Promise.all(promisesForTranscripts).then(results => {

 const statsPromises = studentIDs.map(studentID => fsPromises.stat(`transcript-${studentID}.json`));

 return Promise.all(statsPromises).then(stats => {

 const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);

 console.log(`Finished calculating size: ${totalSize}`);

 });

 }).then(() => {

 console.log('Done');

 });

 console.log('Requests sent!');

}

Async/Await gone mad
Where you place awaits can make a big difference!

async function runClientAsync() {

 console.log('Making a requests');

 const studentIDs = [1, 2, 3, 4];

 const promisesForTranscripts = studentIDs.map(

 async (studentID) => {

 const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

 await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

 });

 console.log('Requests sent!');

 await Promise.all(promisesForTranscripts);

 const stats = await Promise.all(studentIDs.map(studentID => fsPromises.stat(`transcript-${studentID}.json`)));

 const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);

 console.log(`Finished calculating size: ${totalSize}`);

}

async function runClientAsyncSerially() {

 console.log('Making a requests');

 const studentIDs = [1, 2, 3, 4];

 for(let studentID of studentIDs){

 const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`);

 await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

 }

 let totalSize = 0;

 for(let studentID of studentIDs){

 const stats = await fsPromises.stat(`transcript-${studentID}.json`);

 totalSize += stats.size;

 }

 console.log(`Finished calculating size: ${totalSize}`);

}

Running time:

2.2 sec

This is what we mean by “your
code can become synchronous”

Running time:

1.5 sec

The code we’ve seen on past slides:

This does something different:

For each student: make
an async handler to fetch
their transcript and save

it

For each student: wait to
fetch their transcript,

then wait to write it, then
go on to the next student

Async/Await Programming Activity
Transcript Server: Create a student, then update their

1.Create a new student in the transcript server 
 
then…

2.Assign several grades for that student 
 
then…

3.Fetch the transcript for that student 
 
 
If you finish with time to spare, try to make different variants: make a lot of requests
concurrently vs making the requests synchronously (waiting between each request)

axios.post('https://rest-example.covey.town/transcripts', {name: ‘Breakout Group 0’})

axios.post(`https://rest-example.covey.town/transcripts/${studentID}/${course}`,{grade: theGrade}))

axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• for any purpose, even commercially.

• Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

